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ABSTRACT 

EFFECTS OF CONTROL DEVICE AND TASK COMPLEXITY ON  

PERFORMANCE AND TASK SHEDDING DURING A ROBOTIC ARM TASK  

 

Shelby K. Long 

Old Dominion University, 2019 

Director: Dr. James P. Bliss 

 

  The use of robotic arms across domains is increasing, but the relationship between 

control features and performance is not fully understood. The goal of this research was to 

investigate the difference in task performance when using two different control devices at high 

and low task complexities when participants can shed tasks to automation. In this experiment, 40 

undergraduates (24 females) used two control devices, a Leap Motion controller and an Xbox 

controller, to teleoperate a robotic arm in a high or low complexity peg placement task. 

Simultaneously, participants were tasked with scanning images for tanks. During the experiment, 

participants had the option to task shed the peg task to imperfect automation. Analyses indicated 

a significant main effect of control device on task completion rate and time to first grasp the peg, 

with completion rate higher and time lower when using the Leap. However, participants made 

significantly more errors with the Leap Motion controller than with the Xbox controller. 

Participants in both conditions task shed similarly with both control devices and task shed at 

similar times.  The 2 x 2 mixed ANOVAs somewhat supported the proposed hypotheses. The 

results of this study indicate that control device impacts performance on a robotic arm task. The 

Leap Motion controller supports increased task completion rate and quicker peg grasps in high 

and low task complexity when compared with the Xbox controller. This supports the extension 

of Control Order Theory into three-dimensional space and suggests that the Leap Motion 

controller can be implemented in some domains. However, the criticality and frequency of errors 

should be carefully considered. 
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CHAPTER 1 

INTRODUCTION 

Humans use robotic arms to complete a range of tasks, from disarming improvised 

explosive devices (IED) to executing space station repairs (International Federation of Robotics, 

2014; Yu & Zhou, 2014; Marescaux et al., 2002). Many of these tasks require precise, accurate 

performance. The complexity of the task varies, and operators must often complete other tasks 

concurrently.  

Traditionally, manually operated robotic systems have relied on a master-slave paradigm. 

Humans use a control device, such as a joystick, to move the robotic arm to select and transport 

objects. Manipulation of the control device corresponds to robotic arm movement. Often, robotic 

arms are operated from a separate location, or teleoperated. Repetitive tasks, such as elements of 

automobile manufacturing, are often fully preprogrammed. Other tasks, such as IED 

disarmament or surgical procedures, require the adaptability and decision making of a human 

operator (Corliss & Johnsen, 1968; Travaglini. Sawney, Weaver, & Webster, 2016). Task 

responsibilities are not always dichotomously manual- or automation-controlled. Considering 

this, human-robot interaction becomes more complex, specifically when humans have the option 

to offload certain tasks to a robot for independent execution.   

The purpose of the proposed study was to investigate the impact of control device on 

performance in tasks with high and low complexity. This research addresses the theoretical 

implications of control device differences, as well as the concepts of task complexity and task 

shedding. It also addresses current theoretical gaps and leverages experimental methodology to 

address them. The findings are interpreted by considering theoretical and practical implications.  

 



www.manaraa.com

2 

 

Teleoperated Robotic Arms 

  Teleoperation has been defined as human control of remote sensors and actuators 

(Sheridan, 1995). Telerobotics is a specific type of remote device manipulation where a human 

operator, or teleoperator, controls a robot remotely. Use of teleoperated robots emerged so 

operators may complete manual tasks without jeopardizing safety (Sheridan, 2016). The first 

human-controlled robots assisted with task completion in unsafe or cramped environments. 

These direct-control robotic arms now also access hazardous areas, such as radioactive or 

underwater environments and complete tasks without risking human injury (Corliss & Johnsen, 

1968; Sheridan & Verplank, 1978; Sheridan, 2016). For example, military organizations employ 

iRobot PackBot 510, a teleoperated robot with a mobile tracked base and a manipulator (Ebery & 

Stratton, 2005; Stowers, Leyva, Hancock, & Hancock, 2016; Figure 1). This robot is operated 

using two gamepad control devices. 

 

 

 

Figure 1.  Image of iRobot 510 PackBot used to dissemble IEDs (Army Technology, 2018). 
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  Robotic arms have also been widely used by the National Aeronautics and Space 

Administration (NASA) and other space organizations to manipulate objects. For example, 

smaller robotic arms, such as those mounted on Robonaut2, a humanoid robot developed by 

NASA, are used to complete tasks in an unstructured environment, functioning autonomously at 

times (Figure 2; Badger, Diftler, Hart, & Joyce, 2011). These tasks vary in complexity, from 

simple button pressing to cleaning tasks. Previous researchers tested Robonaut2 on a task board 

inside of a space shuttle and on the ground (Badger et al., 2011; Diftler et al., 2014; Tzvetkova, 

2014). Activities included pushing buttons, moving switches, and turning knobs (Ahlstrom et al., 

2013). These efforts focused primarily on the functionality of the robot and software but did 

highlight the potential for switching between autonomous and manual control modes.  

 

 

Figure 2.  Image of Robonaut2 operating levers and switches on the International Space Station 

(National Aeronautics and Space Administration, 2013). 
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  In surgery, human-operated robots are often used to complete medical procedures 

(Oleynikov, 2008). Currently, the most prominent medical system is the da Vinci surgical 

system, a robot consisting of three or four robotic arms controlled by two joystick-like control 

devices (Johnson, Schmidt, & Duvvuri, 2014). Researchers have begun to investigate alternative 

methods of control (Figure 3). Kim, Leonard, Shademan, Krieger, and Kim (2014) compared the 

Xbox Kinect, a motion-capture control device that translates large body movements, to two 

joystick-based devices. They found that operator performance with the Xbox Kinect was 

adequate but slower than performance with the other two devices. Kim et al. noted that the Xbox 

Kinect was a first-generation device and thus such devices are still promising for future use. 

Travaglini et al. (2016) evaluated performance in pituitary tumor resection surgery using the 

Leap Motion controller, a motion-capture device focused on hand movements, and a haptic 

joystick. This was a case study, but the operator performed similarly using both devices. The 

authors concluded that the Leap is a promising tool for future use, especially considering that the 

surgeon did not have any prior experience with the Leap Motion controller. 

 

 



www.manaraa.com

5 

 

 

Figure 3. Picture of Xbox Kinect placement (denoted by white arrow in image on left) and the da 

Vinci Standard Robotic System. Adapted from Kim et al. (2014). 

 

 

All of the robotic arms mentioned above have been preprogrammed to function 

autonomously or semi-autonomously; this is increasingly common in the field of robotics (Chen, 

Haas, & Barnes, 2007). In a review of medical-related robots, Beasley (2012) highlighted several 

current and emerging semi-autonomous robots, including TraumaPod, a semi-autonomous 

teleoperated surgical system. These systems necessitate that humans and automation work 

together to complete tasks. Thus, the relationship between the human teleoperator and automated 

robotic arm is relevant to consider. 

Automation 

  Automation, defined as a machine agent used to accomplish a task that was previously 

accomplished by a human, is now pervasive throughout society (Parasuraman & Riley, 1997). 

Factors such as task complexity, trust, and risk impact automation use (Lee & See, 2004; 



www.manaraa.com

6 

 

Parasuraman & Riley, 1997; Parasuraman, Sheridan, & Wickens, 2000). In some domains, 

robotic arms are preprogrammed to function independently of human interaction. In 

manufacturing, automated robotic arms complete repetitive tasks, usually with a human 

supervisor. Their use prevents human fatigue or repetitive-motion injuries, such as Carpel Tunnel 

Syndrome. It also helps to prevent injuries by reducing contact with harmful tools, such as 

welding torches. 

  Automated robotic arms are not without limitations. Because automated robotic arms are 

programmed to complete only select tasks, if any part of the predetermined process is imperfect, 

the system does not function correctly. For example, if an automotive part is not in the correct 

position, the robotic arm may stop moving until a human intervenes to correct the situation. In 

dire circumstances if an automated robotic arm malfunctions, it may injure or kill a human. For 

example, a welding factory worker entered the work envelope to adjust a part without turning the 

robot off. The worker was struck, electrocuted, and killed (Robotic Trends, 2015). Although 

there are usually safety procedures in place, such as lockout-tagout and defined work envelopes, 

many systems lack sensors to automatically stop if the procedures are not followed (Goetsch, 

2015, p. 313).  

 Beyond the safety concerns, automated robotic arms are not appropriate for all tasks. For 

difficult tasks, complex decision making, or changing environments, human intervention or 

control are often necessary (Chen, Haas, & Barnes, 2007). In such situations, manual control is 

particularly useful. For example, manual control must be used to make novel robotic movements 

that can be mimicked in the future (Pardowitz, Knoop, Dillmann, & Zollner, 2007). When a 

robot’s sensors malfunction, humans must also intervene (Bringes, Lin, Sun, & Alqasemi, 2013). 

This is more common in complex and unpredictable task environments. However, performance 
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of an automated system varies when human interaction is involved (Parasuraman, Sheridan, & 

Wickens, 2000). Previous research has shown that system performance cannot be predicted by 

automation performance alone; human performance must also be considered (Parasuraman & 

Riley, 1997). Performance also varies based on the extent to which system functions are 

automated. 

  Level of automation. In 1978, Sheridan and Verplank (1978; Table 1) proposed a ten-

level scale to classify different levels of automation from no computer assistance (Level 1) to 

complete computer control (Level 10). This classification structure focuses on the automation’s 

role in task completion. For robotic arms, automation level varies. For the purposes of this study, 

lower levels of automation were most relevant because the robotic arm used is controlled directly 

by a human with no computer aid, such as some types of laparoscopic surgery. 
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Table 1 

Levels of Automation 

LOW  

 1. The computer offers no assistance: Human must take all decisions 

and actions 

2. The computer offers a complete set of decision/action alternatives, 

or 

3. Narrows the selection down to a few, or 

4. Suggests one alternative;  

5. Executes that suggestion if the human approves, or 

6. Allows the human a restricted time to veto before automatic 

execution, or 

7. Executes automatically, then necessarily informs the human, and  

8. Informs the human only if asked, or 

9. Informs the human only if it, the computer decides to 

10. The computer decides everything and acts autonomously, ignoring 

the human 

HIGH  

 

Note. Adapted from Sheridan, T. B. (1994). Human supervisory control. In G. Salvendy & W. 

Karwowski (Eds.), Design of work and development of personnel in advanced 

manufacturing (pp. 79-102). Hoboken, NJ: John Wiley and Sons, Inc. 
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As automation advances, human interaction with robotic arms is changing. Human 

operators assume different roles. Some operators have assumed more supervisory roles, such as 

swarm robotics control, where an operator supervises a large number of simple robots (Şahin, 

2004). This option suffers from decreased operator situation awareness and poorer overall task 

performance (Billings & Woods, 1994; Endsley & Kaber, 1999; Parasuraman, Mouloua, & 

Hilburn, 1999). Others have begun collaborating with automation in different ways, such as 

treating the automation as a teammate instead of as a tool (Ososky et al., 2012; Phillips, Ososky, 

Grove, & Jentsch, 2011). This topic has become of increasing relevance as capabilities advance, 

allowing humans to offload tasks to robots. 

Task Shedding  

  Task shedding is defined as a human offloading tasks to automation. Sometimes called 

adaptive task allocation to the machine (ATA-M; Parasuraman & Hancock, 2001), task shedding 

is a non-traditional alternative to static automation (Parasuraman, Mouloua, & Hilburn, 1999). In 

static automation, frequency of computer assistance is predetermined when designing the system. 

In ATA-M, aid of the operator and task allocation are dependent upon the context. Use of task 

shedding has been theorized to mitigate negative workload effects and improve performance 

beyond that of static automation (Hancock, Chignell, & Lowenthal, 1985; Parasuraman, Bahri, 

Deaton, Morrison, & Barnes, 1992). Additionally, task shedding has been studied to use 

automation capabilities to increase operator situation awareness (Byrne & Parasuraman, 1996; 

Bliss, Harden, & Dischinger, 2013). However, there are also drawbacks to task shedding. The 

decision to activate automation increases cognitive workload, but often the automation needs to 

be activated when the operator’s workload is already high (Harris, Hancock, & Arthur, 1993). 

Additionally, fatigue decreases the operator’s ability to activate automation in a high workload 
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task. Harris, Hancock, Arthur, and Caird (1995) examined performance, fatigue, and workload 

using the multi-attribute battery task (MATB; Comstock & Arnegard, 1992) where one task was 

automated for some participants. The authors found that operators reported lower workload when 

automating the tracking task, but performance on non-automated tasks did not improve.  

   The issue of task shedding has become more important as more humans have begun to 

interact with robots that have autonomous options. To date, this has been evaluated in primarily 

supervisory and multi-robot scenarios. Lerman, Jones, Galstyan, and Matarić (2006) evaluated 

this human-robot teaming relationship in a multi-robot system. They asserted that allowing 

changes to robot responsibilities, such as task shedding, improves overall system performance in 

a fully autonomous multi-robotic system. Parasuraman, Barnes, and Cosenzo (2007) developed 

recommendations for supervisory control of uninhabited air and ground vehicles. They suggested 

that operators might be best supported by adaptive automation support systems, replacing static 

automation that leads to over-reliance, skill degradation, and decreased situation awareness. 

Kruijff-Korbayová et al. (2015) applied a user-centric approach to task shedding in robotic 

disaster responses, particularly search and rescue. For these rescue efforts, each robot is 

controlled by a first responder taking commands from a human team leader. The robots work 

alongside human workers in both a digital simulation (2015) and a physical search scenario 

(2017). In 2017, Kruijff-Korbayová et al. executed a real-life search and rescue mission to 

examine how human-robot teaming worked in a scenario. The use of robots was well-received, 

and the authors deemed such structure useful and appropriate for actual emergencies due to the 

similar results to a human-only scenario. 

  Few studies have explored human-robot task shedding in a one-on-one setting. Riley et 

al. (2008) examined performance and situation awareness in collaborative robot control between 



www.manaraa.com

11 

 

human teammates. In the experiment, two human operators had control of either two robots, 

where each human controlled their own, or three robots, where each human controlled their own 

and shared control of the third robot. The third robot performed an initial navigation task 

autonomously but then waited for the operator to indicate a new task to complete. Although the 

focus of the study was situation awareness and performance, the researchers found that in the 

shared condition, when human operators could offload tasks to the third robot, perceived 

workload and frustration was lower than the manual, two-robot condition (Riley et al., 2008). 

Importantly, the ability to task shed to a third robot improved performance on the navigation 

task. 

  Additionally, shedding tasks to robots could be beneficial over simple supervisory 

control. The current human-robot interaction paradigm generally involved supervisory control of 

a robot with human intervention as needed. Beasley (2012) cites this as a reason that medical 

robots, such as autonomous surgical robotic arms, are not in use or preferred by surgeons. For 

tasks where lower levels of automation are important due to task intricacy (e.g., IED 

disarmament, surgery) and automation is becoming available, task shedding behavior and the 

impact on performance must be considered. Additionally, other factors that may impact 

performance in a human-controlled robotic arm must be considered.  

Control Devices 

Control order. To manipulate a robot, operators use a control device. A control device is 

defined as a piece of equipment that converts human input to system movement. The relationship 

between human input and a system’s actual movement is called the control order (Poulton, 1974; 

Sanders & McCormick, 1987). For example, a zero-order control or position control has a direct 

relationship between input and output. An example of zero-order control is a touchpad, where the 
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operator’s touch corresponds directly to curser movement. In contrast, the gas pedal in a car is a 

first-order control or rate control. The gas pedal’s displacement is proportionally related with the 

output position of the car. The output is proportional to rate of change of the input, or the 

derivative. When positioning an automobile on the road, operators use a steering wheel. The 

steering wheel’s angular position determines the x-axis position of the car. Thus, a steering 

wheel is second-order or acceleration control. For the operator to understand how manipulating 

the control device affects the final position, he or she must mentally translate using the 

relationship between movement and position. A visual representation of the relationships is 

included in Figure 4.  

 

 

Figure 4. Relationship of control order to output movement.  

Note. Adapted from Poulton, E.C. (1974). Tracking skill and manual control. Cambridge, MA: 

Academic Press. 
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The relationship between input and performance is difficult to control experimentally 

because other factors affect system control. System variables, such as lag time and equipment 

type, and non-system variables, such physical operator characteristics and environmental 

conditions, may impact performance as well (Poulton, 1974; Speight & Bickerdike, 1968). In an 

experimental setting, many of these variables can be controlled. Early researchers isolated the 

effects of independent variables on control performance by using a paper-paced contour system 

to compare control orders. A paper-paced contour system is a system where a paper with a 

continuous line moves across a frame visible by the participant (Figure 5). The participant uses a 

control device to align a pencil with the line and trace match the original line. These researchers 

found conflicting results. Some found performance with a zero-order control was superior in a 

tracking task (Lincoln, 1953; Regan, 1960). Others found that performance with a first-order 

control device was superior (Jagacinski, Hartzell, Ward, & Bishop, 1978). This disparity may be 

caused by a user’s previous experience using joysticks. 
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Figure 5. Layout of paper-paced contour system (left) and example of guideline and participant 

tracings.  

Note. Adapted from Crossman, E. R. F. W. (1974). Automation and skill. In E. Edwards & F. P. 

Lees (Eds.), The human operator in process control (pp. 1–24). London: Taylor & 

Francis. 
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Beyond paper-paced contour systems, authors have compared performance with zero- 

and first-order control devices using a text selection task and a target acquisition task. Card, 

English, and Burr (1978) evaluated performance on a text selection task using four input devices: 

a mouse, a first-order joystick, step keys, and text keys. Performance using the mouse, a zero-

order control device, was fastest and had fewest errors. After further testing, positioning time 

with the mouse was found to be almost the minimal performance time achievable, even with 

additional training (Card, English, & Burr, 1978). MacKenzie and Soukoreff (2003) replicated 

this study using updated standards for pointing devices and found similar results. Similarly, 

Jagacinski, Hartzell, Ward, and Bishop (1978) investigated performance on a target acquisition 

task using a first-order and zero-order joystick. Performance, measured in target acquisition time, 

was significantly better for the position, or zero-order, control than the other controller at several 

different levels of complexity. 

Limitations of control order theory. Much of the previous control order theory research 

has focused on tasks with predetermined deviations, or tasks where the participants are required 

to adjust to the stimulus. In the paper-paced contour tasks, the participant adjusted the desired 

line as it moved across the page (Poulton, 1974; Speight & Bickerdike, 1968; Lincoln, 1953; 

Regan, 1960). In target acquisition tasks, participants manipulated the joystick to match the 

moving target (Jagacinski, Hartzell, Ward, & Bishop, 1978). Researchers’ efforts to evaluate 

mouse usage exploit tasks similar to those used when testing robotic arm users (Card, English, & 

Burr, 1978; MacKenzie & Soukoreff, 2003). The task requires participants to identify how to 

complete a task and complete it to the best of their abilities using the control device. However, 

such tasks require movement in only two dimensions, typically on a computer screen, and neither 

involve robotics. 
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The current task diverges from past control theory research in two ways. As no previous 

research has evaluated control order differences within a three-dimensional space, the current 

task is arguably more complex. Motion-capture control devices, conceptualized as zero-order 

controls, lack the tactile feedback associated with moving a physical device, such as the physical 

feedback of a joystick on your finger. To accommodate for this, a hand overlay will be used in 

the experiment to give visual feedback. Additionally, a single joystick does not have the 

appropriate degrees of freedom to control a robotic arm, even though this is the control device 

traditionally used in Control Order Theory experiments. To accommodate this, two joysticks, the 

directional pad, and one trigger button will be used to control parts of the arm.  

Joysticks. Many robotic arms used required a joystick for command input. This includes 

all of the paper-paced contour studies (e.g., Speight & Bickerdike, 1968) and some more recent 

studies with robotics (e.g. Riley et al., 2008). Joysticks can be programmed with any control 

order, but typically they are first-order control devices, where the input is translated 

proportionally to output robot motion. Joysticks are ubiquitous in video game control devices. In 

fact, video game control devices, such as devices for the Xbox and Playstation 3, are 

recommended for use in complex tasks, such as teleoperating an unmanned ground vehicle, due 

to performance and user preference in comparison to other joystick devices (Oppold, Rupp, 

Mouloua, Hancock, & Martin, 2012).  

Motion-capture control devices. Researchers have investigated the use of motion 

capture devices, such as data gloves, cameras, or sensors, to control robots. Initially, invasive 

devices such as gloves or wrist bands were used to capture motion and translate to robotic 

motion (Fischer, van der Smagt, & Hirzinger, 1998; Sturman & Zeltzer, 1994). With the 

development of affordable, non-invasive, motion-capture devices, such as the Leap Motion 
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controller and Xbox Kinect, researchers have begun to examine the possibility of using these 

systems to capture hand position and directly equate that to robotic movement. Harden, Bliss, 

and Dischinger (2013) developed a motion-capture control mechanism for a robotic arm using 

the Xbox Kinect. They theorized that the system would provide a zero-order, intuitive interaction 

for humans that would minimize training time. Moldovan and Staretu (2014) evaluated the 

potential for using the Xbox Kinect as a method of robotic arm control. They found that the 

Kinect provides sufficient information in respect to depth and position but lacks necessary 

specificity for human finger movements.  

Weichert, Bachmann, Rudak, and Fisseler (2013) examined a preliminary version of the 

Leap Motion 3D controller. The Leap Motion 3D controller is a commercially available motion-

capture control device (Figure 6). It recognizes hand gestures and motion using two 

monochromatic IR cameras and three infrared lights. Weichert et al. (2013) examined its 

accuracy using an industrial robot and a reference pen to mark a point. They found that task 

accuracy with the Microsoft Kinect to be less than the Leap Motion controller (Weichert, 

Bachmann, Rudak, & Fisseler, 2013). In 2016, Moldovan and Staretu evaluated the Leap Motion 

controller in comparison to data gloves to operate a robotic hand virtually and physically. They 

found the Leap Motion controller to be an appropriate, non-intrusive way to capture human hand 

poses when using a virtual hand and prototype RoboHand (Moldovan & Staretu, 2016; Staretu & 

Moldovan, 2016). Long and Bliss (2016) examined performance differences between a Leap 

Motion controller and a Xbox 360 controller using a Karlsson Robotics Lynxmotion ALD5D 

four degrees of freedom arm to complete task on a pre-made task board of linear light switches, 

knobs, and a dimmer. They found that participants performed comparably on light switch and 

dimmer tasks when using the Leap and Xbox controllers, but participants performed significantly 
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better on the knob task when using the Xbox controller.  

 

 

 
 

Figure 6. Leap Motion 3D controller used in the experiment. 

 

 

In the human-computer interaction and computer science domains, gesture recognition 

devices have been categorized as natural user interfaces (NUIs). NUIs are defined as interfaces 

that enable users to interact with systems naturally, or the way that they interact with real-world 

objects (Jain, Lund, & Wixon, 2011; Steinberg, 2012). Motion-capture systems, such as the Leap 

Motion controller and the Xbox Kinect, are theorized to be control mechanisms similar to touch 

screens and mouse interactions (Wignor & Wixon, 2011).  Wignor and Wixon (2011) suggested 

building an experience for users that feels like an extension of the body and that is easily 

mastered by novices. Researchers have found that NUIs facilitate increased learnability and 

speed (Wachs, Kölsh, Stern, & Edan, 2011). In contrast, Norman (2010) suggests that NUIs are 

not natural or easy to learn and recall. For example, motion-capture NUIs may not be appropriate 

because of the lack of tactile feedback. Unlike command line interfaces or graphical user 
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interfaces (GUIs), NUIs lack the necessary feedback to help users troubleshoot when a mistake 

occurs. Because of this, errors may be more difficult to remedy. The systems require precision 

and are best suited for simple applications because complex system operation requires the ability 

to specify scope, range, temporal order, and conditional dependencies. According to Norman, 

operators are unable to communicate this using body gestures alone. Although earlier NUI 

platforms proved problematic, Wignor and Wixon (2011) assert that the success of NUIs should 

not be measured by these early failures because of similar early failures with GUIs, which are 

now widely used. 

Many researchers have introduced engineering-oriented perspectives on the plausibility 

of motion-capture control of a robotic arm or theorized design recommendations for future 

devices, but few experiments yielding performance data exist (but see Long & Bliss, 2016). 

Additionally, none have explored the use of motion-capture controls in a complex, real-world 

domain to determine if motion-capture systems are best for simpler applications only. The 

feasibility of using motion-capture control devices at varying levels of task complexity must be 

explored. 

Task Complexity 

  Although Norman (2010) theorized that motion-capture control device may be 

appropriate only for simple tasks, the impact of task complexity on performance when using 

motion-capture control devices has not been evaluated. Task complexity can be defined as the 

objective structure of the task (Liu & Li, 2012; Wood, 1986). Although some researchers have 

used the terms “task difficulty” and “task complexity” interchangeably (e.g., Rouse & Rouse, 

1979), task complexity is used to define the difference in tasks based on task characteristics. Liu 

and Li (2012) developed a model of task complexity composed of ten dimensions: number of 
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task components, variety of task components, ambiguity, interdependency, inaccurate or 

misleading information, instability of task components, novelty, incongruity of task components, 

physical or cognitive action complexity, and temporal demand. The experimental task proposed 

here focuses on manipulating physical action complexity as this task is a physical task. This is 

selected as it closely aligns with task complexity variance in real-world situations, such as IED 

disarmament.  

Purpose 

  The purpose of the proposed research was to investigate the effect of control device type 

and task complexity on performance in a robotic arm task. Researchers have evaluated and 

demonstrated the use of a motion-capture device to control a robot arm (c.f. Harden, Bliss, & 

Dischinger, 2013; Staretu & Moldovan, 2016), but few have evaluated such motion control 

strategies experimentally. None have evaluated the impact of task complexity, a crucial factor to 

consider in practice as applied tasks vary in complexity. The experiment reported here evaluated 

the changes in task completion time, accuracy (measured in number of errors), and task shedding 

behavior as a function of robot control device and task complexity.  

Hypotheses 

H1: Participants will complete tasks more quickly using the Leap Motion controller. 

H2: Participants will make fewer errors when using the Leap Motion controller.  

H3: Participants will task shed less when using the Leap Motion controller. 

Previous researchers have found that performance is better when using a zero-order 

control device over higher order devices (Card, English, & Burr, 1978; Jagacinski, Hartzell, 

Ward, & Bishop, 1978; Lincoln, 1953; Regan, 1960). 

 H4: Participants will complete tasks more quickly when in the low task complexity 
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condition. 

H5: Participants will make fewer errors when in the low task complexity condition. 

H6: Participants will task shed less when in the low task complexity condition.  

 Task complexity has been shown to impact performance in other domains (Liu & Li, 

2012; Wood, 1986). Specifically, performance suffers during more complex tasks. 

H7: Participants will complete tasks more quickly using the Leap Motion controller when 

task complexity is low than when task complexity is high. 

H8: Participants will make fewer errors using the Leap Motion controller when task 

complexity is low than when task complexity is high. 

H9: Participants will task shed less when task complexity is low using the Leap Motion 

controller when task complexity is low than when task complexity is high. 

Norman (2010) hypothesized that motion-capture control devices may be less suitable for 

complex task performance because of the inability to specify scope, range, temporal order, and 

conditional dependencies. Motion-capture control devices should better enable simple tasks. 

Thus, the high task complexity condition should impact the zero-order, motion-capture control 

condition more than the first-order, joystick condition, a statistically significant interaction. 
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CHAPTER 2 

METHOD 

Design 

This study employed a 2 (control device: Xbox controller, Leap Motion controller, 

manipulated within groups) x 2 (task complexity: low, high, manipulated between groups) mixed 

design to test the hypotheses. In all conditions, participants were tasked with using a robotic arm 

to place a peg in four corners of a peg board (see Figure 7). For the high task complexity 

condition, the peg was placed on the outer corners of the board. For the low task complexity 

condition, the peg was placed in the inner corners, as described below. The task was to pick up 

the peg and place it in the correct peg hole. Each time the peg was placed correctly or fell, the 

peg was replaced to a magnet adjacent to the peg board. Participants teleoperated the robotic arm 

and relied on two cameras for visual task information. During the task, a cloth separated 

participants from the robotic arm. While completing the pegboard task, participants scanned 

satellite images of Baghdad, Iraq for tank targets to simulate the division of attention that often 

occurs on a battlefield. Before beginning the experiment, participants were told they were 

responsible for determining if there was a threat in the area. Mistakes could cause loss of human 

life. Similarly, the robotic arm task was presented to participants as equally important; 

participants were instructed to perform quickly and accurately. During the experiment, 

participants were given the option to shed the robotic arm task to automation, and they were told 

the automation would be reliable but imperfect. If the participant shed the task, feedback about 

that decision was provided in the form of a video of a successful peg transfer or an unsuccessful 

transfer. Three of four corners were be successful to simulate imperfect but fairly reliable 

automation. The video of one corner, the back right, was unsuccessful. The experimental task 
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represented robotic arm control during which the operator would be required to manually 

complete a complex task while having the option to utilize automation.  Such a situation could 

include improvised explosive device (IED) disarming. 

 

 

Figure 7. Peg board used in the experiment. The dimensions of the board were 19.4 cm x 19.4 

cm. The high complexity task pegs (in blue) were 17.0 cm apart laterally and vertically. Low 

complexity task pegs (in yellow) were 10.0 cm apart laterally and vertically. 

 

 

  Independent variables. The first independent variable was the control device, Xbox 

controller or Leap Motion 3D controller, manipulated within groups. The control device used 

first was randomized using a random number generator for each participant to prevent carryover 

effects. The second independent variable was level of task complexity, manipulated between 

groups. Participants in the low task complexity condition completed the task with pegs closer 

together. The manipulation of complexity was supported by pilot testing. 
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Dependent variables. Dependent measures were task completion speed (in seconds), 

accuracy, and number of tasks (peg placements) shed to the automation. Accuracy was measured 

by number of errors. Task shedding was be measured by the number of tasks shed when 

completing the task, as well as by the amount of time in seconds the participant required to 

decide to task shed. Further explanation of how each variable was measured is included below. 

Participants 

  To determine the number of participants needed, an a priori power analysis was 

conducted for a mixed experimental design using G*Power 3.1.9.2 software. The analysis 

indicated that 40 participants total were required to achieve a power of .80 and an effect size of f 

= 0.40 (Maxwell & Delaney, 2004). A significance threshold of p = .05 was established to 

balance and minimize the likelihood of making a Type I and Type II error. 

 Participants were undergraduate students from Old Dominion University, recruited using 

the Sona Experiment Management System. Participants received 1.5 research credits for 

participating in the study. The study took approximately one hour. The study was approved by 

Old Dominion University’s Institutional Review Board, and written, informed consent was 

obtained from each participant prior to participation for their overall participation and for usage 

of photos and videos (Appendix A). 

Materials 

  Robotic arm and software. The robotic arm used for this study was the Karlsson 

Robotics Lynxmotion ALD5D arm, controllable along four degrees of freedom (Figure 8). A 

Dell laptop with 256 GB hard drive and 16 GB RAM hosted a software program developed by 

Virtual Reality Rehab, LLC, specifically designed to control the robotic arm and present the user 

with an effective interface. The software was developed in Unity3D (Figure 9). The software 
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provided visual feedback from two cameras, one mounted to the left of the robot and one 

mounted on the head. Participants were separated from the robot by a cloth partition (Figure 10) 

and relied upon the cameras, simulating teleoperation. For the motion-capture control device 

condition, the participant received visual feedback indicating hand position (Figure 11).  

 

Figure 8. The Karlsson Robotics Lynxmotion ALD5D 4 degrees of freedom robotic arm used in 

the experiment. 
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Figure 9. Screenshot of the software used for the experiment, developed in Unity3D. 
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Figure 10. Experimental set up.  
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Figure 11. Example of motion-capture control feedback in the Unity3D interface. 

 

  Control device.  The Xbox controller used was a controller with two analog joysticks, 

two analog triggers, a directional control gamepad, and nine buttons (Figure 12). For this 

experiment, both analog joysticks, the right analog trigger, and the directional control gamepad 

were used (others were disabled). The Leap Motion 3D controller is a motion-capture, gesture-

driven control device (Figure 6). It recognizes hand gestures and motion using two 

monochromatic cameras and three infrared lights. The device is 11.25 mm x 80 mm x 30 mm 

(Leap Motion, 2015). According to the manufacturer, the sensor captures eight cubic feet of 

space, can track fingers with specificity of 0.01 mm, and can track movements at over 200 

frames per second (Leap Motion, 2015; Weichert et al., 2013). Researchers have evaluated the 

Leap Motion controller widely, as it is used as a control device in commercial virtual reality 

applications (Guna, Jakus, Pogacnick, Tomazic, & Sodnick, 2014; Jakus, Guna, Tomazic, & 
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Sodnik, 2014; Weichert et al., 2013). Generally, these studies found that hand accuracy 

diminishes at distances greater than 250 mm from the device. This study did not exceed this 

distance. Also, individual differences in hand size, hand shape, degree of hand and finger 

orientation, and amount of hand occluded, affect tracking abilities (Guna, Jakus, Pogacnick, 

Tomazic, & Sodnick, 2014; Jakus, Guna, Tomazic, & Sodnik, 2014; Weichert et al., 2013). The 

Xbox and Leap each connected to a laptop using a USB cord and were compatible with the 

robotic arm software developed by Virtual Reality Rehab, LLC.  

 

 

 

Figure 12. Xbox One controller used in the experiment. 
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 Peg board. For the task, a peg board was used (Figure 7). This task was selected because 

of the capabilities of the robotic arm, specifically its gripper strength and reach. Additionally, it 

exemplified the common pick-and-place motion demonstrated by robotic arms in practice. 

Ultimately, this task aimed to simulate IED disarming. Although IED disarmament involves 

render safe procedures that are protected from civilians to prevent misuse of the information to 

create more dangerous IEDs, disarmament procedures include pick-and-place motion based on 

the components included in Figure 13 (Joint Staff, 2012).  The peg board was 19.4 cm x 19.4 cm. 

In the high complexity task, the pegs were 17.0 cm apart. In the low complexity task, the pegs 

were 10.0 cm apart. Between the two tasks, there was a 65.4% reduction in area. The base of the 

arm was affixed 10 cm from the peg board to allow participants to reach each corner. The arm 

gripper’s starting position was 5 cm to the right of the board.  

During pilot testing, it became clear that participants struggled to place the peg into the 

target holes without dropping it.  Therefore, a magnet was added to the bottom of the peg, as 

well as to eight target peg holes, to facilitate the placement task. The peg board was also elevated 

seven cm to ensure that participants could easily reach the corners of the board with the arm 

gripper.  
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Improvised Explosive Device Components  

Main Charge 

 

Power Sources 

 

Switch 

 

Containers 

 

Initiators 

 

 

Figure 13. Components of a typical IED. (Joint Staff, 2012) 

 

 

 

  Visual search task.  Participants were shown aerial images previously used by Chancey, 

Bliss, Yamani, and Handley (2017) and told to search for an enemy tank. If there was no threat, 

the participant responded, “All clear” or “No tank.” If there was a threat, they responded, “Threat 

detected,” or “Tank.” This information was captured by the video camera recording. The purpose 

of this simultaneous task was to simulate the multi-tasking environment operators often 

encounter for a more accurate reflection of task shedding. Additionally, it simulated searching 

the environment for threats, a task that a teleoperator may complete simultaneously with 

controlling a robot for IED disarming (Joint Staff, 2012). Example images are included in 

Appendix F. 
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Measures 

  Demographics Questionnaire. Each participant completed a questionnaire indicating his 

or her age, sex, visual acuity, handedness, hand or arm injury, and computer confidence 

(APPENDIX B). 

  Video Game Experience Questionnaire.  Participants completed a genre-specific video 

game experience questionnaire to assess how often they play video games per week (Orvis, 

Horn, & Belanich, 2008; APPENDIX C). The questionnaire included ten video game genres.  

 Control Device Experience Questionnaire. The video game experience questionnaire 

included questions about eighteen control devices (e.g., joystick, touchscreen, Xbox, Wii remote; 

APPENDIX D). Participants indicated how many hours per week on average they spent playing 

games using each control device. 

  Robot Experience Questionnaire. Participants rated their familiarity with thirteen types 

of robots e.g., manufacturing robot, research robot, robot security guard) on a five-point scale (1 

= Not sure what this is; 5 = Have used or operated this robot frequently). The full questionnaire 

is included inError! Reference source not found. (Smarr et al., 2014). 

Robotic arm task performance. Proficiency of robotic arm manipulation was reflected 

by participants’ speed and accuracy in completing the task. To measure these variables, the task 

was video recorded and independently evaluated by two raters.   

  Speed. Speed was measured by the number of seconds it required for the pick-and-place 

task to be completed. Completion time was measured by two raters watching the video and 

independently timing the task using the time stamp on the video. The coders noted time in 

seconds for each peg to be placed on the peg board. These values were summed for a total 

completion time estimate. Level of inter-rater reliability (IRR) was established using a two-way 
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mixed intra-class correlation (Cicchetti, 1994; Hallgren, 2012). This analysis was selected 

because the data was coded by the same two coders for all subjects, but the coders were not 

randomly sampled from the population. For analyses, the time measured by each rater was 

averaged. A high intra-class correlation (ICC = .991) on time, a continuous variable, was 

achieved, indicating acceptable interrater reliability (Hallgren, 2012).  

 Accuracy. Task accuracy was reflected by the number of errors in the task. Errors 

included the number of times that the peg was not successfully grasped, was dropped, or was 

placed incorrectly. The number of errors were calculated for each peg and summed for a final 

accuracy score. If the participant dropped the peg, it was returned to its initial position by the 

experimenter. A high intra-class correlation (ICC = .980) on number of errors was achieved, 

indicating acceptable interrater reliability (Hallgren, 2012). Any discrepancies between raters 

concerning error interpretation were resolved by meeting and discussing until agreement was 

reached. 

  Task shedding. Task shedding was measured by the number of pegs the participant 

decided to shed the robotic arm control task to the automation. The participant was informed that 

he or she could shed as many tasks as they wished, and that the automation was reliable but 

imperfect. In actuality, the automation was 75% reliable. From the participant’s perspective, the 

unsuccessful automated task was placement of the back right peg. If the participant did not task 

shed the back right peg, they did not see the automation fail. After shedding one or more pegs, 

the participant could resume the next task if time permitted, provided they did not task shed all 

four.  

Procedure 

  After reading and signing the Informed Consent Form (Appendix A) stating the risks and 
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benefits of participating in the study, as well as consenting to the recording of videos and 

pictures during the study, participants were randomly assigned to either a high or low task 

complexity condition. The participants were also randomly assigned to use one of the control 

devices first, either the Xbox or the Leap Motion controller.   

  Participants then completed the Demographics Questionnaire, Video Game Experience 

Questionnaire, Control Device Experience Questionnaire, and Robot Experience Questionnaire, 

to provide information about their experience level with games, control devices, and robots. 

Participants were then shown the robot arm and the camera view for teleoperation.  

  Next, the experimenter trained the participant to operate the first control device. The 

participant was given up to two minutes to operate the control device and ask questions. 

Participants then completed a few practice tasks demonstrating the capabilities of each degree of 

freedom on the robotic arm. Specifically, they used the arm to flip five switches (two vertical 

light switches, one dimmer, and two horizontal light switches) on a task board (Figure 13) to 

become more acclimated with the system. The practice session ended after five minutes or when 

the participant successfully completed all five switched.  

After practice, the experimenter gave instructions for the experimental session. The 

experimental session consisted of picking up and placing a peg in four locations on a peg board. 

Participants in the high task complexity condition had pegs that were farther apart. This occurred 

simultaneously with the visual search task. While performing both tasks together, participants 

were told they could shed the pick-and-place task to an automated controller, but that the 

automation was not always successful.  

 Following use of the first device, the participant completed the pick-and-place task again 

using the second control device. As before, the experimenter trained the participant to operate the 
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control device by having them complete the practice session described above. After the practice 

session, the participant completed the second experimental session.  He or she then completed a 

Post-Experiment Opinion Questionnaire (Appendix E), was debriefed about the purpose of the 

experiment and dismissed. 

 

 

 

Figure 14. Image of portion of task board used in the practice task. 
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CHAPTER 3 

RESULTS  

Data Coding and Descriptive Statistics 

 Following data coding, descriptive statistics were calculated and are presented in Table 2. 

The data were inspected to ensure there were no outliers, conditions had equal numbers, and the 

variables were normally distributed as determined by skewness and kurtosis values less than an 

absolute value of 2.0 (Maxwell & Delaney, 2004). Except for the equipment malfunctions 

discussed below, all scores were included because the range of performances were deemed to 

reflect typical extremes of human performance. Data for three participants were not included in 

the analyses: two due to technology malfunctions during the experiment and one due to a 

participant who had a physical disability affecting his arm motion. One technical malfunction 

was due to the battery dying before the task began, and it was replaced for future participants. 

The second malfunction was likely due to a stripped servo at the elbow joint. The participant 

with a physical disability regarding motion moved his arm with big and jerky motions. The 

participant did not successfully complete any of the practice tasks or the tank task, so I decided 

not to include those data. Two participants were missing tank-spotting data due to inability to 

code from the video. However, they were still included in analyses as the results of the tank-

spotting task did not interfere with the hypotheses testing.   

  Levene’s tests were used to address homogeneity of variance for the between-subjects 

manipulation. An alpha level of p < .05 was established to indicate statistical significance. Order 

effects were evaluated for each dependent variable. No order effect of initial control device was 

found for task completion time with Leap, t(38) = 0.053, p = .958, task completion time with 

Xbox, t(38) = -0.500, p = .620, errors with Leap, t(38) = 1.816, p = .077, errors with Xbox, t(38) 
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= 0.105, p = .917, task shedding frequency with Leap, t(38) = 0.590, p = .559, or task shedding 

frequency with Xbox, t(38) = 0.281, p = .780. Additionally, there was no control device by 

condition interaction, F(1,36) = 0.138, p = .712, partial η 2 = .004, no main effect of control 

device, F(1,36) = 0.183, p = .671, partial η 2 = .005, and no main effect of condition on tank 

correct ratio (F(1,36) = 0.875, p = .356, partial η 2 = .024).  The ratio of correct responses 

(identifying if tank or no tank) over total number of images was 0.612 (SD = 0.155) for the Leap 

condition and 0.601 (SD = 0.159) for the Xbox condition. 
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Table 2 

Descriptive Statistics 

  Leap  Xbox 

Task completion time (s) Low 600.00 (0.00) 600.00 (0.00) 

High 600.00 (0.00) 600.00 (0.00) 

Time to grasp first peg (s) All 323.48 (210.98) 426.00 (221.70) 

Number of errors Low 20.50 (2.81) 8.25 (1.99) 

High 17.89 (2.65) 5.89 (1.88) 

Number of tasks shed Low 1.05 (1.36) 1.25 (1.65) 

High 1.25 (1.55) 0.90 (1.37) 

Time to task shed (s) Low 356.13 (157.58) 262.63 (144.68) 

High 291.86 (123.42) 302.00 (129.05) 

Completion rate (0-1) Low .156 (.064) .031 (.034) 

High .167 (.060) .056 (.034) 

 

Note. Descriptive statistics for mixed ANOVA for non-task shedding participants (N = 17; 8 in 

low complexity, 9 in high complexity) for task completion time, errors, and completion rate. 

Task shedding and time to grasp first peg reflect all 40 participants. Time to task shed only 

includes participants who task shed in both conditions (N = 15). Standard deviations are in 

parentheses. Time included is speed, errors, and completion rate does not include participants 

who task shed. Time to grasp first peg is collapsed across task complexity because condition did 

not impact grasping the peg. Descriptive statistics for all participants (N = 40) are included in 

Appendix H. 
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Task Completion Time 

 To evaluate Hypotheses 1, 4, and 7, a 2 x 2 mixed ANOVA was conducted with Task 

Completion Time as the dependent variable. All non-task shedding participants used the 

maximum amount of time (600s), so no differences were seen between groups.  

Number of Errors 

 To evaluate Hypotheses 2, 5, and 8, a 2 x 2 mixed ANOVA was conducted with Number 

of Errors as the dependent variable (see Figure 15). There was not a significant interaction of 

control device and task complexity, F(1, 15) = 0.003, p = .958, partial η 2 < .001. There was a 

significant effect of control device, F(1, 15) = 27.561, p < .001, partial η 2 = .648. Participants 

made more errors overall with the Leap (M = 19.12, SD = 7.82) than with the Xbox (M = 7.00, 

SD = 5.59). There was no significant effect of task complexity, F(1, 15) = 1.051,  p = .322, 

partial η 2 = .065. 
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Figure 15. Errors by control device and task complexity. Error bars reflect SD. 

 

 

Number of Tasks Shed 

To evaluate Hypotheses 3, 6, and 9, a 2 x 2 mixed ANOVA was conducted with Number 

of Tasks Shed as the dependent variable. There was no significant interaction of control device 

and task complexity, F(1, 38) = 1.281, p = .265, partial η 2 = .033. There were no significant 

effects of control device, F(1, 38) = 0.095, p = .759, partial η 2 = .003, or of task complexity, 

F(1, 38) = 0.350, p = .853, partial η 2 = .001. Participants task shed similarly with the Leap (M = 

2.00, SD = 1.38) and Xbox (M = 1.87, SD = 1.58). They task shed similarly in both low (M = 

1.917, SD = 2.00) and high (M = 1.96, SD = 2.09) task complexities.  
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Post-Hoc Analyses 

 Correlational analyses. Pearson correlations were used to test for relationships between 

performance and several demographic variables, including Control Device Experience with 

Xbox and motion capture devices (Xbox Kinect and Leap), overall Video Game Experience, 

Average Computer Hours per Week, and Computer Confidence (see Appendix H). Several 

correlations were significant, including inverse relationships between Task Completion Time and 

Number of Tasks Shed. This occurred because participants who task shed spent less time on the 

task. Similarly, there were significant correlations between Task Completion Time and Number 

of Errors. This occurred because participants who spent more time on the task had more 

opportunity to make errors. There was also a significant correlation between Number of Tasks 

Shed for Leap and Xbox. This might have occurred because participants who task shed for one 

task shed tasks similarly with both control devices.  

Task completion. To further evaluate task performance, I examined Task Completion 

Rate using a 2 x 2 mixed ANOVA (see Figure 16). There was not a significant interaction of 

control device and condition, F(1, 15) = .016, p = .901, partial η 2 = .001. There was a significant 

effect of control device, F(1, 15) = 4.636, p = .048, partial η 2 = .236. Participants had a higher 

Task Completion Rate with the Leap (M = .323, SD = .124) overall than the Xbox (M = .044, SD 

= .034). There was not a significant effect of task complexity, F(1, 15) = 0.146, p = .708, partial 

η 2 = .010. 
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Figure 16. Completion rate by control device and task complexity. Error bars reflect SD. 

 

 

 Time to task shed. Additionally, I evaluated Time to Task Shed (in seconds) for the 15 

participants who shed tasks (N =15; low task complexity = 8, high task complexity = 7) using a 2 

x 2 mixed ANOVA. There was not a significant interaction of control device and condition, F(1, 

13) = 1.535, p = .237, partial η 2 = .106. There was not a significant effect of control device, F(1, 

13) = 0.993, p = .237, partial η 2 = .071. There was not a significant effect of condition, F(1, 13) 

= 0.044, p = .837, partial η 2 = .003. Participants took more time to task shed in the low task 

complexity Leap condition than any other condition (M = 356.13, SD = 157.58). Participants 

took the least amount of time in the low task complexity Xbox condition (M = 262.63, SD = 

144.68). Only one participant task shed immediately in the Xbox condition; the minimum for the 

Leap condition was 144 s.   

Time to complete first task. As all non-task shedding participants used the maximum 

amount of time (600 s), I decided to examine at the time to complete the first peg using a 2 x 2 
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mixed ANOVA with time to complete first peg as the dependent variable. From this, I found 

there was not a significant interaction between control device and task complexity F(1, 15) = 

0.499, p = .491, partial η 2 = .032. There was not a significant effect of control device, F(1, 15) = 

1.177, p = .295, partial η 2 = .073. There was not a significant effect of task complexity, F(1, 15) 

= 0.081, p = .780, partial η 2 = .005. The mean values for each condition were near the maximum 

time limit of 600s. Participants using the Leap completed the first peg task slightly faster on 

average in the low task complexity condition (M = 537.75s, SD = 101.45) than in the high task 

complexity condition (M = 552.67s, SD = 93.39). Participants using the Xbox completed the first 

peg task slightly slower in the low task complexity condition (M = 595.63s, SD = 12.37) than the 

high task complexity condition (M = 564.89s, SD = 104.96). 

Time to grasp first peg. To help gather more information about the time differences 

between conditions, I coded videos for the time participants took to initially grasp the peg from 

the board. This eliminated the task complexity variable, but I conducted a paired samples t-test to 

determine if there was a difference between time to grasp the peg initially using the two control 

devices. I found there was a significant difference between time to initially grasp the peg, t(39) = 

-2.74, p = .044. Participants grasped the peg more quickly using the Leap (M = 323.48s, SD = 

210.97) than the Xbox (M = 427.60s, SD = 221.70). This provides support for Hypothesis 1, that 

participants completed the task more quickly with the Leap.  

Chi-squared of task shedding by group. To determine if there was any difference 

between the Number of Participants who Task Shed in each group, I conducted a chi-squared test 

to determine if there was a significant difference between the actual number of people who task 

shed in each group and half of the group (n = 10). From this, I found there was not a significant 

difference between the expected and actual task shedding values, X2 (2, N = 40) = 0.600, p = 
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.896. 

Content analysis. During the experiment, I noted comments that participants made 

during the experiment, as well as reasons participants mentioned for task shedding or not task 

shedding. After the experiment, participants gave written answers to a question about strategy (if 

they had any) and any final comments. I analyzed the content of these comments by frequency to 

help further understand performance in this experiment. A histogram of the number of 

participants who mentioned certain topics is included below (Figure 17).  

 

 

 

Figure 17. Histogram of the most commonly mentioned topics 
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CHAPTER 4 

DISCUSSION 

 

 The aim of this work was to experimentally evaluate the impact of control device and 

task complexity on performance and task shedding behavior. From this, an experimental 

paradigm to observe task shedding behavior was developed. The findings of this study highlight 

both the potential for using motion-capture systems for robotic arm tasks as well as the 

shortcomings of such systems. Additionally, this experiment expanded Control Order Theory 

into three-dimensional spaces and provided understanding of appropriate contexts for the Leap 

Motion controller to be used. 

Theoretical Implications 

Automation and task shedding. As technology improves, Zhang et al. (2017) predicted 

that automation will be used widely for IED disarmament by 2030. As progress toward full 

autonomy occurs, humans and automation will likely share control for many years to come. 

However, some operators are not comfortable relying on robotic arms to complete tasks 

autonomously (Beasley, 2012). The results of this study support this statement. Participants were 

told the automation was reliable but imperfect. Overall, participants would have performed better 

if they had task shed to the robot (placing three of four pegs correctly, or 75%). In spite of this, 

nearly half of the forty participants (19 Leap, 22 Xbox) chose not to task shed, and 

approximately 25% (10 Leap, 5 Xbox) shed only one task.  

Individuals also did not task shed to the robot in a timely manner. The earliest anyone 

task shed with the Leap was 144 seconds, and only one participant task shed immediately to the 

robot when using the Xbox. The average time to task shed for each group was higher than four 

minutes. There are multiple explanations for the extended time to task shed. Participants may be 
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reluctant to rely on automation (Beasley, 2012). When participants were asked about why they 

chose not to task shed, seven participants explicitly mentioned wanting to complete the task 

independently. Slow task shed times may also reflect participants’ under-reliance due to the 

novelty of the automation and their short exposure time with the system which left little time to 

calibrate. Although they were told the automation was reliable but imperfect, a chi-square 

revealed no significant difference from 50% task shedding in any condition.  

Participants who shed tasks in one condition typically shed tasks when using both control 

devices, as reflected by the significant correlation between Leap tasks shed and Xbox tasks shed 

(r = .454, p < .01). Sixteen participants shed tasks with both Leap and Xbox, five participants 

shed tasks when only using the Leap, and two participants shed tasks only when using the Xbox. 

Overall, this correlation suggests perhaps individual differences, such as self-efficacy or 

technology acceptance, impacted task shedding behavior globally instead of the control device or 

task complexity. Researchers should continue exploring these individual differences to 

understand tasks shedding behavior.  

Control devices. Past research investigating Control Order Theory has demonstrated that 

lower order control devices support better performance than higher order control devices because 

of decreased mental translation between input and output (Lincoln, 1953; Regan, 1960). Early 

studies involving paper-paced contour systems and two-dimensional screens explored this idea, 

but the conditions were not equivalent to executing user-generated movements of a robot in a 

three-dimensional world. The results of the current study partially support the extension of 

Control Order Theory into three-dimensional space. Completion rate with the Leap Motion 

controller, conceptualized as a zero-order control device, was significantly higher than with the 

Xbox controller, conceptualized as a first-order device. Participants were able to initially grasp 
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the peg with the Leap Motion controller significantly faster than with the Xbox controller. 

However, errors were significantly higher when using the Leap than when using the Xbox. This 

low level of performance accuracy with the Leap does not support the theory that superior 

performance will occur with a lower order control device.  

Based on these results, task type and consequence of error must be closely considered 

when deciding what type of control device is appropriate for any given task. For example, IED 

disarmament robots require extremely accurate and precise performance to avoid detonating a 

bomb. An error could be fatal, potentially injuring or killing highly trained individuals (BBC, 

2010). Similarly, an error during surgery, such as grasping incorrect tissue, could irreparably 

injure a patient. The error number and type in this experiment would render use of the Leap 

Motion controller inappropriate for these applications. However, several factors must be 

considered before dismissing use of the Leap Motion controller for high-stakes tasks. The two 

control devices offer different feedback for participants. For the Xbox controller, participants 

receive haptic feedback when manipulating the joystick or buttons. When using the Leap Motion 

controller, a hand overlay was used to convey visual feedback. Participants may require 

additional or different feedback for more accurate performance with the Leap Motion controller.  

Additionally, the Leap Motion controller is an early motion-capture control device. 

Improvements to both the software and hardware have been made since the beginning of this 

experiment, and more improvements will be made in years to come. The next generation motion-

capture control devices should be evaluated independently to determine their suitability for such 

critical tasks, as noted by Wignor and Wixon (2011). 

  The results of this study refute Norman’s (2010) assertion that NUIs are not natural or 

easy to learn. The results do support Wachs and colleagues (2011) findings that NUIs increase 
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speed. In half of a one-hour session, participants learned to use the Leap Motion control device 

adequately enough to significantly outperform the Xbox control device regarding completion 

rate and time to first grasp the peg. Conversely, the significantly higher error rate with the Leap 

supports the idea that NUIs are more challenging to use due to the lack of necessary feedback to 

recover from errors and the need for high levels of operator precision.  

 Task complexity. The findings of this study offer limited insight into the impact of low 

and high task complexity tasks on performance and task shedding behavior. Based on pilot 

testing and previous studies, the task complexity manipulation and time limitations were 

appropriate. During pilot testing (N = 6), one participant completed all peg transfers successfully 

with the Leap Motion controller and one completed three of four with the Xbox controller. 

Participants struggled more to move the peg to the outer, high complexity corners of the peg 

board. There appeared to be differences between task complexity conditions, but both appeared 

to be manageable.  

Additionally, past studies guided my decision for time limitations. Long and Bliss (2016) 

limited participants to ten minutes on the task board task, and participants completed slightly 

more than 75% of tasks on average. Participants in previous studies mentioned arm fatigue 

(Long and Bliss, 2016). This issue was also explicitly mentioned by ten people in the current 

study. These factors contributed to my decision to limit time working with the Leap Motion 

controller. Similarly, in Crane, Proaps, Benasutti, and Bliss (2018), participants (N = 17) used a 

Leap Motion controller to pick up a peg and place it in a peg hole or specific location. Sixteen 

participants completed the task in less than 501 seconds. One participant took 670 seconds. The 

means for each of the three studies were all under 300 seconds, and each subsequent trial showed 

improvement. From these studies and pilot testing, I expected some participants would be able to 
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complete the task in the time limitation of 600 seconds while limiting fatigue experienced, and 

the task was appropriately complex.  However, no significant impact of task complexity was 

seen for any of the dependent variables.  

Upon visual inspection, there was a stronger impact of task complexity on the Leap 

condition than the Xbox on the number of tasks shed, time to task shed, and completion rate, 

mirroring the ordinal interaction predicted. The lack of effect could be due to floor and ceiling 

effects, as performance was generally poor. It could also be due to insufficient power to detect 

the interaction. Importantly, the results suggest that the task is too challenging, particularly when 

paired with the visual secondary task. Thus, further research with a simpler task is required to 

understand the impact of task complexity on control device and task shedding behavior, 

particularly to understand if NUI are appropriate for complex tasks. 

Experimental paradigm. The tasks used in this study were designed to simulate an 

operator’s experience when dissembling an IED while scanning the environment for threats. 

Based on publicly available information about IED components and the environment in which 

the task is completed, the experimental task appropriately approximated real-world scenarios 

(Joint Staff, 2012). Additionally, when pilot testing the experiment, I encountered a participant 

who interacted with a manually controlled robotic arm during her service in the Navy. She noted 

that using the Xbox controller was similar to her experience controlling the robotic arm on the 

ship with a joystick device. She also noted the experiment realistically portrayed her experience 

with robotic arms, but she mentioned it was more likely participants would shed the visual search 

task instead of the robot arm task based on task criticality and currently available visual-search 

aid technology. This participant’s subject matter expertise was valuable because it further 

supported the use of the current paradigm and suggested the results may generalize to certain 
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military robot arm control situations. 

  However, the task was not sensitive to changes in task complexity, likely due to floor and 

ceiling effects with performance. The task might be modified by manipulating task complexity 

on either a different dimension or with a simpler task. Participants were able to operate the robot, 

shed tasks, and monitor for tanks successfully. Changing the task to be simpler should reveal 

differences between groups if they exist. Adjustments to simplify the task could include the 

participant starting with the peg in the gripper, using a smaller or lighter peg, using a smaller 

board, or requiring participants to place the peg in a larger peg hole. Task complexity could also 

be manipulated on other dimensions instead of physical task complexity, such as temporal 

demand or number of task components (Liu & Li, 2012). Additionally, integrating measures that 

can be used when the participant has shed a task, such as eyetracking or physiological measures, 

might be useful to help mitigate data lost when participants shed a task and to help increase 

power. 

Practical Applications 

As noted in the Introduction, the findings of this study have far-reaching implications as 

manually-controlled robotic arms are widely used in a variety of domains. Although the primary 

application in this study was military-based, the findings can be applied to surgical and outer 

space domains. In the surgical domain, researchers have already begun to explore the use of the 

Leap Motion control device for telescopic surgery (Travalini et al., 2016). In a case study, 

Travalini et al (2016) found promising results for the Leap as a control device in surgery. The 

current study further supports that motion-capture systems could be used for surgery, but the 

number and type of errors should be explored before implementing widely. For use in outer 

space, the Leap Motion control device again could be used, particularly for operating a humanoid 
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robot like Robonaut2 to operate switches and press buttons. However, the criticality of the task 

and the issue of lag time must be considered, neither of which we addressed here.  

  This study should also be used to inform gesture-based training. In this study, participants 

were trained to use the system by experimenter demonstration and hands-on experience. This 

method trained participants adequately enough to outperform the Xbox control device overall. 

Formal guidelines have not been written on how to best train users to operate a motion-capture 

based system. Future practitioners should consider the method used here when determining the 

best method of training motion-capture system users.  

  The current study supports the results of other similar studies. Long and Bliss (2016) 

similarly found that participants performed significantly better with the Leap Motion controller 

on most tasks over the Xbox controller. The current study also supports the findings that the 

Leap Motion controller is an appropriate, non-intrusive way to control a physical robotic arm 

(Moldovan & Staretu, 2016; Staretu & Moldovan, 2016). The current study served to fill 

important gaps in the literature, including experimentally comparing the Leap and Xbox control 

devices, demonstrating the Leap outperforms the Xbox in some regards.  

Limitations and Future Research 

 This experiment suffers some limitations that must be noted when interpreting the results. 

First, the Leap Motion controller and Xbox controller, although conceptualized as zero- and first-

order control devices respectively, differ from traditional zero- and first-order control devices. 

The Leap Motion lacks the physical feedback of a joystick programmed with zero-order control. 

The Xbox controller employees a directional pad and a trigger button to aid with moving each 

joint instead of only the two joysticks. These differences may impact their interpretation as zero- 

and first-order control devices. Additionally, the two control devices provided differing 
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feedback. The Leap Motion control device provided visual feedback for participants through a 

hand overlay on the camera views. The Xbox controller provided haptic feedback for participants 

via the physical movement of joysticks and pressing buttons. These differences must be 

considered. 

  Ten participants explicitly mentioned fatigue or their arm hurting when using the Leap 

Motion control device. Participants did not mention this when using the Xbox controller. 

Although there was no evidence of it in our study due to likely floor and ceiling effects, 

participants may experience performance decrements due to physical workload is using the 

system long enough. Further research is needed to determine what typical threshold for fatigue.   

  The population tested was college students with little experience with teleoperation 

control, and it could be argued that this experiment measured performance during the early 

stages of learning for both control methods. Performance and task shedding behavior may have 

been different if the participants were experience teleoperators. Future researchers should 

consider using data from teleoperators or training participants further. 

  In the future, researchers should consider collecting qualitative data regarding the reason 

why participants decide to task shed or not, as well as more information on individual differences 

that may impact task shedding behavior. Seven of 17 non-task shedding participants explicitly 

commented that they did not task shed because they wanted to complete the task on their own. 

Measures such as self-efficacy or motivation might reveal individual differences that impact task 

shedding behavior, which is increasingly important to consider as humans and robots share 

control in the future. 

  Practically, new technologies are quickly outpacing the Leap Motion controller and the 

software used in this experiment. New control devices, such as Rigel, a mounted motion-capture 
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system that is an improve upon the Leap Motion controller, are prognosticated to have improved 

tracking due to software and hardware improvements. As these products come to market, these 

results may not be supported in similar follow-up work. The improved fidelity of visual feedback 

as well as improved tracking might impact performance positively or by providing support that 

motion-capture system are inappropriate for complex tasks. Replication is necessary to 

understand if the results of this study are representative of motion-capture systems in general or 

of this specific system.   
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CHAPTER 5 

CONCLUSION 

  This study explored the use of two control devices and task complexity on performance 

and task shedding behavior in a robotic arm task. This study supports the idea that participants 

are not comfortable shedding tasks to an autonomously performing robot, a behavior that must 

be further considered as technology advances and task shedding becomes more common 

(Beasley, 2012; Zhang et al., 2017). Additionally, this study partially supports the extension of 

Control Order Theory into three-dimensional, self-determined pathways, but further research 

with more experienced populations must be conducted to solidify this assertion. Finally, this 

study highlights the potential for using the Leap Motion controller on tasks traditional relegated 

to joystick-based control devices, such as the Xbox controller. Based on the results of this study, 

the application to military and other domains should be considered, but the impact of errors 

should be closely examined before implementation.   
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APPENDIX A 

 

INFORMED CONSENT DOCUMENT 

 

PROJECT TITLE: Human Performance on a Robotic Arm Task (ARMCONTROL3) 

 

INTRODUCTION 

The purposes of this form are to give you information that may affect your decision whether to say 

YES or NO to participation in this research, and to record the consent of those who say YES.  

 

RESEARCHERS 

James P. Bliss, Ph.D., Old Dominion University, Psychology Department, Responsible Project 

Investigator 

Alexandra B. Proaps, M.S., Old Dominion University, Psychology Department 

Shelby K. Long, B.S., Old Dominion University, Psychology Department 

 

DESCRIPTION OF RESEARCH STUDY 

This experiment is interested in learning more about how to best complete a task with a robotic 

arm. First, you will complete a few questionnaires about demographics and video game 

experience. Next, you will use a control device to complete tasks using the robotic arm. After, you 

will complete questionnaires about your experiences during the experiment. 

 

If you say YES, then your participation will last for approximately 60 minutes in MGB 324. 

Approximately 500 subjects will be participating in this research. 

 

EXCLUSIONARY CRITERIA 

To be eligible for this study, you must be at least 18 years of age or older. 

 

RISKS AND BENEFITS 

RISKS:  If you decide to participate in this study, then you may face a risk of physical strain from 

using the Xbox controller or Leap controller, but it will be no more than from playing a video 

game. The researcher tried to reduce these risks by minimizing the amount of time in the study to 

sixty minutes.  As with any research, there is some possibility that you may be subject to risks that 

have not yet been identified. 

BENEFITS:  There are no known benefits from this study. 

 

COSTS AND PAYMENTS 
The main payment to you for participating in this study is the extra credit or course credit points that you 

will earn for your class.  Although researchers are unable to give you payment for participating in this study, 
if you decide to participate in this study, you will receive 1.5 Psychology Department research credit, which 

may be applied to course requirements or extra credit in your Psychology course. Equivalent credits may 

be obtained in other ways. You do not have to participate in this study, or any Psychology Department 

study, in order to obtain this credit.   

 

NEW INFORMATION 

If the researchers find new information during this study that would reasonably change your 

decision about participating, then they will give it to you. 
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CONFIDENTIALITY 

The researchers will take reasonable steps to keep your private information, such as 

questionnaires, confidential. The researchers will store the information in a locked filing cabinet 

for five years, after which the data will be destroyed. The results of this study may be used in 

reports, presentations, and publications, but the researcher will not identify you. 

 

WITHDRAWAL PRIVILEGE 

It is OK for you to say NO.  Even if you say YES now, you are free to say NO later, and walk 

away or withdraw from the study -- at any time. Your decision will not affect your relationship 

with Old Dominion University, or otherwise cause a loss of benefits to which you might 

otherwise be entitled.  The researchers reserve the right to withdraw your participation in this 

study, at any time, if they observe potential problems with your continued participation. 

 

COMPENSATION FOR ILLNESS AND INJURY:  
If you agree to participate, then your consent in this document does not waive any of your legal rights.  

However, in the event of harm, injury, or illness arising from this study, neither Old Dominion University 

nor the researchers are able to give you any money, insurance coverage, free medical care, or any other 
compensation for such injury.  In the event that you suffer injury as a result of participation in any research 

project, you may contact Dr. James P. Bliss at 757-683-4051 or Dr. Tancy Vandecar-Burdin (ODU IRB 

Chair) at 757-683-3802. 
 

VOLUNTARY CONSENT 
By signing this form, you are saying several things.  You are saying that you have read this form or have 
had it read to you, that you are satisfied that you understand this form, the research study, and its risks and 

benefits.  The researchers should have answered any questions you may have had about the research.  If 

you have any questions later on, please contact the researcher at the number above.  

 

If at any time you feel pressured to participate, or if you have any questions about your rights or 

this form, then you should call Dr. George Maihafer, the current IRB chair, at 757-683-4520, or 

the Old Dominion University Office of Research, at 757-683-3460. 

 

And importantly, by signing below, you are telling the researcher YES, that you agree to participate 

in this study.  The researcher should give you a copy of this form for your records. 

 

 

 

 

 

Participant’s Printed Name & Signature                                                    

 

 

 

Date 

 

 

 

Investigator’s Printed Name & Signature  

 

 

 

Date 
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APPENDIX B 
 

DEMOGRAPHICS QUESTIONNAIRE 

The purpose of this questionnaire is to collect background information for participants in 

this experiment. This information will be used strictly for this experiment and for research 

purposes only.  Please complete each item to the best of your ability.   

 

1.  Age  _____ 

 

 

2.  Sex:        Male         Female          Other 

 

 

3.  Have you ever been diagnosed as having a deficiency in your visual acuity? _____(Y/N) 

 

a. If yes, do you have correction with you (i.e. glasses, contact lenses, etc.)? 

_____(Y/N) 

 

 

4.  Have you ever been diagnosed as color deficient or color blind? ______(Y/N) 

 

 

 

5.  Which is your dominant hand?   

 

  

 

6.  Do you have any arm or hand injuries?  _____(Y/N) 

 

  a.    If yes, please explain? ____________________________________________ 
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APPENDIX C 

 

VIDEO GAME AND CONTROL DEVICE EXPERIENCE QUESTIONNAIRE 

 

Indicate the average number of hours per week you spend playing the following types of 

games. If none, indicate 0. 

 

a. First person shooter games (e.g., Perfect Dark, Call of Duty)  _______ 

b. Massively multiplayer online games (e.g., World of Warcraft, Age of Empires)  

_______ 

c. Flight simulators (e.g., X-Plane, ProFlight Sim) _______ 

d. Sports/racing (e.g., Madden NFL 10, Mario Kart Wii) _______ 

e. Military command/strategy (e.g., Tekken Tag, America’s Army) _______ 

f. Fighting (e.g., Street Fighter IV) _______ 

g. Life/business simulations (e.g., The Sims) _______ 

h. Fantasy/adventure (e.g., Assassins Creed, Final Fantasy 8) _______ 

i. Puzzles/card games/board games (e.g., Solitaire, Settlers of Catan).  _______ 

j. Social networking games (e.g., Mafia Wars, Farmville) _______ 

k. Other: Please specify ______________________  Hours: _______ 
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8.  Indicate the number of hours per week you spend playing games using the following 

controllers. If none, indicate 0. 

 

a. Steering wheel  _______ 

b. Keyboard and  mouse  _______ 

c. Joystick for PC (e.g., Logitech Extreme 3D)  _______ 

d. Nintendo DS and Nintendo 3DS _______ 

e. Gameboy and Gameboy Color _______ 

f. Gameboy Advance _______ 

g. Touchscreen (e.g., smartphone, tablet) _______ 

h. Wii remote _______ 

i. Wii accessories (e.g., numchuck, balance board) _______ 

j. WiiU gamepad _______ 

k. Nintendo 64 controller _______ 

l. Nintendo GameCube controller _______ 

m. Xbox, Xbox 360, and Xbox One controller _______ 

n. PlayStation controller _______ 

o. PlayStation Portable (PSP) and PlayStation Vita _______ 

p. Xbox Kinect _______ 

q. Leap Motion 3D controller_______ 

r. Oculus Rift _______ 

s. Other: Please specify ______________________  Hours: _______ 

 

 

9.   Indicate the average number of hours per week you spend using computers (personal 

and work combined):  _____ 

 

 

 

10.  Circle the number that corresponds to how confident you are in using computers: 

1    2 3 4 5 6 7 

Low        Average            High 
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APPENDIX D 

 

ROBOT EXPERIENCE QUESTIONNAIRE 

For the following robots, please indicate your familiarity in terms of hearing about them, 

using them, or operating them.  Please circle only one option. 

Robots 
Not sure 

what this is0 

Never heard 

about, seen, 

or used this 

robot1 

Have only 

heard about or 

seen this robot2 

Have used 
or 

operated this 

robot only 

occasionally3 

Have used 

or  

operated 

this robot 

frequently4 

a. Autonomous 

Car 

 

0 1 2 3 4 

b. Domestic/Home 

robot (e.g., 

Roomba) 

 

0 1 2 3 4 

c. Entertainment/t

oy robot (e.g., 

Aibo, Furby) 

0 1 2 3 4 

d. Manufacturing 

robot (e.g., 

robotic arm in 

factory) 

0 1 2 3 4 

e. Military Robot 

(e.g., search and 

rescue) 

 

0 1 2 3 4 

f. Personal Robot 

2 (PR2) 

 

0 1 2 3 4 

g. Remote 

presence robot 

(e.g., Texai, 

Anybot) 

 

0 1 2 3 4 

h. Research robot 

(e.g., at 

university or 

company) 

0 1 2 3 4 

i. Robot lawn 

mower 

 

0 1 2 3 4 

j. Robot security 

guard 

 

0 1 2 3 4 

k. Space 

exploration 

robot (e.g., 

Mars Rover) 

0 1 2 3 4 
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l. Surgical robot 

(e.g., da Vinci 

Surgical 

System) 

0 1 2 3 4 

m. Unmanned 

Aerial Vehicle 

(UAV)/Drone 

 

0 1 2 3 4 
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APPENDIX E 
 

POST-EXPERIMENT QUESTIONNNAIRE 
 

Please answer the following questions about yourself by circling the most appropriate response. The 

information you provide will be kept completely confidential and will not be linked backed to you in any way. 

 

Please circle only one answer per question.  

1. This experiment was time consuming. 

Disagree strongly  Disagree  Neutral  Agree  Agree Strongly 

2. This experiment was confusing. 

Disagree strongly  Disagree  Neutral  Agree  Agree Strongly 

3. I did not feel like I had a good grasp on the instructions for this experiment. 

Disagree strongly  Disagree  Neutral  Agree  Agree Strongly 

4. I feel like I performed well on this experiment. 

Disagree strongly  Disagree  Neutral  Agree  Agree Strongly 

5. I feel like I performed poorly on this experiment. 

Disagree strongly  Disagree  Neutral  Agree  Agree Strongly 

6. This experiment was easy to understand 

Disagree strongly  Disagree  Neutral  Agree  Agree Strongly 

7. This experiment was enjoyable. 

Disagree strongly  Disagree  Neutral  Agree  Agree Strongly 

8. I did not enjoy this experiment. 

Disagree strongly  Disagree  Neutral  Agree  Agree Strongly 

9. I am glad that I participated in this experiment 

Disagree strongly  Disagree  Neutral  Agree  Agree Strongly 

10. I felt engaged in the tasks for this experiment. 

Disagree strongly  Disagree  Neutral  Agree  Agree Strongly 
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11. I felt like I received adequate time to train and get comfortable with the experimental task before beginning the 

actual experiment. 

Disagree strongly  Disagree  Neutral  Agree  Agree Strongly 

12. I felt like I did not receive adequate time to train and get comfortable with the experimental task before 

beginning the actual experiment. 

Disagree strongly  Disagree  Neutral  Agree  Agree Strongly 

13. I felt motivated to perform to the best of my ability in this experiment. 

Disagree strongly  Disagree  Neutral  Agree  Agree Strongly 

14. I did not care how well I performed in this experiment. 

Disagree strongly  Disagree  Neutral  Agree  Agree Strongly 

15. I tried my best to perform well on this experiment. 

Disagree strongly  Disagree  Neutral  Agree  Agree Strongly 

16. I did not try my best to perform well on this experiment. 

Disagree strongly  Disagree  Neutral  Agree  Agree Strongly 

17. Overall, I would recommend this experiment to other students. 

Disagree strongly  Disagree  Neutral  Agree  Agree Strongly 

18. Did you have a strategy for responding to the experimental task?  

 Yes  No 

 If yes, please describe 

_______________________________________________________________________________ 

_______________________________________________________________________________ 

_______________________________________________________________________________ 

 

19. Do you have any other thought, feelings, or comments about the experiment?  

_______________________________________________________________________________ 

_______________________________________________________________________________ 

_______________________________________________________________________________ 
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APPENDIX F 
 

EXAMPLE OF AERIAL IMAGE 
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APPENDIX G 

DESCRIPTIVE STATISTICS FOR FULL DATA SET 

  Leap  Xbox 

Speed (s) Low 537.30 (89.55) 463.65 (179.06) 

High 461.45 (161.08) 474.45 (164.67) 

Number of errors Low 16.80 (6.77) 5.60 (5.08) 

High 14.55 (7.32) 4.90 (3.92) 

Number of tasks shed Low 1.05 (1.36) 1.25 (1.65) 

High 1.25 (1.55) 0.90 (1.37) 

Completion rate (0-1) Low .187 (.197) .038 (.092) 

High .113 (.172) .075 (.143) 

 

Note. Descriptive statistics for mixed ANOVA for all participants (N = 40). Standard deviations 

are in parentheses. Time included is speed, errors, and completion rate does include participants 

who task shed.
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APPENDIX H 
 

CORRELATIONS BETWEEN PERFORMANCE VARIABLES AND 

EXPERIENCE 
 

 L 

Tim

e 

X 

Tim

e 

L 

Com

p 

Rate 

X Comp 

Rate 

L 

Tasks 

Shed 

X 

Tasks 

Shed 

L# 

Errors 

X# 

Errors 

Comp 

Hrs 

Comp 

Conf 

Xbox 

Exp 

Motion 

Exp 

VGE 

overall 

LTime .  

.280 

.202 -.188 -

.844*

* 

.034 .806**  .255 -.042 -.192 .040 . .235 

X Time  . .016 -.086 .270 -

.774*

* 

.175 .506** -.382* .018 -.242 . -.240 

L Comp 

Rate 

  . .259 -.158 -.110 .190 .092 -.162 -.221 .086 . .091 

X 

Comp 

Rate 

   . .061 -.059 -.198 .068 -.080 -.211 .230 . .064 

L Tasks 

Shed 

    . .454*

* 

-.391* -.299 .043 .244 .015 . -.162 

X Tasks 

Shed 

     . -.157 -.442** .390* .069 .171 . .240 

L# 

Errors 

      . .142 -.051 -.242 .045 . -.060 

X# 

Errors 

       . -.221 -.198 -.046 . -.044 

Comp 

Hr 

        . .361* .503*

* 

. .519** 

Comp 

Conf 

         . .673 . .147 

Xbox 

Exp 

          . . .507** 

Motion 

Exp 

           . . 

VGE 

overall 

            . 

 * < .05;  **< .01 

Note. No participants reported using Motion Capture controllers on a weekly basis.
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